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Motivation 

 These lectures are intended as an introduction to 
RF terminology and techniques 

 Lectures are based on the notes for the 
Microwave Measurement Class that is taught at 
the US Particle Accelerator School 
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Part 1 - Transmission Lines 

 Phasors 

 Traveling Waves 

 Characteristic Impedance 

 Reflection Coefficient 

 Standing Waves 

 Impedance and Reflection 

 Incident and Reflected 
Power 

 

 

 Smith Charts 

 Load Matching 

 Single Stub Tuners 

 dB and dBm 

 Z and S parameters 

 Lorentz Reciprocity 

 Network Analysis 

 Phase and Group Delay 
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Part 2 - RF Cavities 

 Modes 
 Symmetry 

 Boundaries 

 Degeneracy 

 RLC model 

 Coupling 
 Inductive 

 Capacitive 

 Measuring 

 Q 
 Unloaded Q 

 Loaded Q 

 Q Measurements 

 

 Impedance Measurements 
 Bead Pulls 

 Stretched wire 

 Beam Loading 
 De-tuning 

 Fundamental 

 Transient 

 Power Amplifiers 
 Class of operation 

 Tetrodes 

 Klystrons 
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Part 3 - Beam Signals 

 Power Spectral Density 

 Spectra of bunch loading patterns 

 Betatron motion 

 AM modulation 

 Longitudinal motion 

 FM and PM modulation 

 Multipole distributions 
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Terminology and Conventions 

    tcosVtV o

      tjj
o

tj
o eeVReeVRetV  

1j 

Sinusoidal 
Source 

j
oeV is a complex phasor 
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Phasors 

 In these notes, all sources are sine waves 

 Circuits are described by complex phasors 

 The time varying answer is found by multiplying 
phasors by          and taking the real part 

oV

 cosVo

 sinVo



Re

Im

    sinjVcosVeV oo
j

o

tje 
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TEM Transmission Line Theory 

Charge on the inner conductor: 

xVCq l

where Cl is the capacitance per unit length 

Azimuthal magnetic flux: 

xILl

where Ll is the inductance per unit length 
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Electrical Model of a Transmission Line 

i ii 

v vv 

xLl

xCl

Voltage drop along the inductor: 

 
dt

di
xLvvv l

Current flowing through the capacitor: 

dt

dv
xCiii l



 Introduction to RF – Part 1 – Transmission Lines - McGinnis 10 

Transmission Line Waves 

Limit as x->0 
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Solutions are traveling waves 
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v+ indicates a wave traveling in the +x direction 
v- indicates a wave traveling in the -x direction 
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Phase Velocity and Characteristic Impedance 

vel is the phase velocity of the wave 

llCL

1
vel 

For a transverse electromagnetic wave (TEM), the phase 
velocity is only a property of the material the wave travels 
through 




1

CL

1

ll

The characteristic impedance Zo 

l

l
o
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L
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has units of Ohms and is a function of the material AND the 
geometry 
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Pulses on a Transmission Line 

Pulse travels down the transmission line as a forward going wave 
only (v+). However, when the pulse reaches the load resistor: 

oo

L

Z

v

Z

v

vv
R

i

v










LRv

so a reverse wave v- and i- must be created to satisfy the 
boundary condition imposed by the load resistor 
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Reflection Coefficient 

The reverse wave can be thought of as the incident wave 
reflected from the load 











oL

oL

ZR

ZR

v

v Reflection coefficient 

Three special cases: 

 RL = ∞ (open)   = +1 

 

 RL = 0 (short)   = -1 

 

 RL = Zo    = 0 

A transmission line terminated with a resistor equal in value to 
the characteristic impedance of the transmission line looks the 
same to the source as an infinitely long transmission line 
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Sinusoidal Waves 

   tjxj eeVRextcosVv  

vel



phase velocity 









2

vel

f2
wave number 

By using a single frequency sine wave we can now define complex 
impedances such as: 

LIjV 
dt

di
Lv 

dt

dv
Ci  Cj

1
Zcap




LjZind 

CVjI 

Experiment: Send a SINGLE frequency () sine wave into a 
transmission line and measure how the line responds 
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Standing Waves 

LZoZ

0x 

x

d

At x=0 

oL
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ZZ

ZZ
VV




 

Along the transmission line: 

   xcosV2e1VV

eVeVV

xj

xjxj






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traveling wave standing wave 
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Voltage Standing Wave Ratio (VSWR) 
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Voltage Standing Wave Ratio (VSWR) 
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Reflection Coefficient Along a Transmission Line 
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Impedance and Reflection 
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 Im

d2

There is a one-to-one 
correspondence between G 
and ZL 
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Impedance and Reflection: Open Circuits 

For an open circuit ZL= ∞ so L = +1 

Impedance at the generator: 

 dtan

jZ
Z o

G





For d<<1 

dCj

1

d

jZ
Z

l

o
G







 looks capacitive 

For d = /2 or d=/4 

0ZG 

An open circuit at the load looks like a short circuit at the 
generator if the generator is a quarter wavelength away from 
the load 
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Impedance and Reflection: Short Circuits 

For a short circuit ZL= 0 so L = -1 

Impedance at the generator: 

 dtanjZZ oG 

For d<<1 

dLjdjZZ loG  looks inductive 

For d = /2 or d=/4 

GZ

A short circuit at the load looks like an open circuit at the 
generator if the generator is a quarter wavelength away from 
the load 
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Incident and Reflected Power 
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Incident and Reflected Power 

 Power does not flow! Energy flows.  
 The forward and reflected traveling waves are power 

orthogonal 
• Cross terms cancel 

 The net rate of energy transfer is equal to the 
difference in power of the individual waves 

 To maximize the power transferred to the load we 
want: 

0L 

which implies: 

oL ZZ 

When ZL = Zo, the load is matched to the transmission line 
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Load Matching 

What if the load cannot be made equal to Zo for some other 
reasons? Then, we need to build a matching network so that the 
source effectively sees a match load. 

0

LZsP 0Z M

Typically we only want to use lossless devices such as 
capacitors, inductors, transmission lines, in our matching 
network so that we do not dissipate any power in the network 
and deliver all the available power to the load. 
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Normalized Impedance 
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Z

Z
z
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

It will be easier if we normalize the load impedance to the 
characteristic impedance of the transmission line attached to 
the load. 
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1
z

Since the impedance is a complex number, the reflection 
coefficient will be a complex number 
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Smith Charts 

The impedance as a function of reflection coefficient can be 
re-written in the form: 
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
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
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 
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


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These are equations for 
circles on the (u,v) plane 
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Smith Chart – Real Circles 
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Smith Chart – Imaginary Circles 
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Smith Chart 
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Smith Chart Example 1 

Given: 

 50Zo

 455.0L

What is ZL? 

 





5.67j5.67

35.1j35.150ZL
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Smith Chart Example 2 

Given: 

 50Zo

 25j15ZL

What is L? 

5.0j3.0

50

25j15
zL








 124618.0L
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Smith Chart Example 3 

Given: 

 50Zo

 50j50ZL

What is Zin at 50 MHz? 

0.1j0.1

50

50j50
zL








 64445.0L

nS78.6

?Zin 

  2j
L

d2j
Lin ee

 2442

 180445.0in

   190.0j38.050Zin

 2442



 Introduction to RF – Part 1 – Transmission Lines - McGinnis 33 

Admittance 

A matching network is going to be a combination of elements 
connected in series AND parallel. 

Impedance is NOT well suited when working 
with parallel configurations. 

21L ZZZ 

2Z1Z

2Z

1Z

21

21
L

ZZ

ZZ
Z




ZIV 

For parallel loads it is better to work with 
admittance. 

YVI 
2Y1Y

21L YYY 1
1

Z

1
Y 

Impedance is well suited when working 
with series configurations. For example: 
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Normalized Admittance 
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These are equations for 
circles on the (u,v) plane 
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Impedance and Admittance Smith Charts 

 For a matching network that contains elements 
connected in series and parallel, we will need two 
types of Smith charts 
 impedance Smith chart  

 admittance Smith Chart 

 The admittance Smith chart is the impedance 
Smith chart rotated 180 degrees. 
 We could use one Smith chart and flip the reflection 

coefficient vector 180 degrees when switching between a 
series configuration to a parallel configuration. 
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• Procedure: 

• Plot 1+j1 on chart 

• vector = 

• Flip vector 180 degrees  

Admittance Smith Chart Example 1 

Given: 

64445.0

What is ? 

1j1y 

 116445.0

Plot y 

Flip 180 
degrees 

Read  
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• Procedure: 

• Plot  

• Flip vector by 180 
degrees 

• Read coordinate  

Admittance Smith Chart Example 2 

Given: 

What is Y? 

 455.0  50Zo

Plot  

Flip 180 
degrees 

Read y 

36.0j38.0y 

 

  mhos10x2.7j6.7Y

36.0j38.0
50

1
Y

3





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Matching Example 

0

100sP  50Z0 M

Match 100 load to a 50 system at 100MHz 

A 100 resistor in parallel would do the trick but ½ of 
the power would be dissipated in the matching network. 
We want to use only lossless elements such as inductors 
and capacitors so we don’t dissipate any power in the 
matching network 
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Matching Example 

 We need to go from 
z=2+j0 to z=1+j0 on 
the Smith chart 

 We won’t get any 
closer by adding 
series impedance so 
we will need to add 
something in parallel.  

 We need to flip over 
to the admittance 
chart 

Impedance 
Chart 
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Matching Example 

 y=0.5+j0 

 Before we add the 
admittance, add a 
mirror of the r=1 
circle as a guide. 

Admittance 
Chart 
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Matching Example 

 y=0.5+j0 

 Before we add the 
admittance, add a 
mirror of the r=1 
circle as a guide 

 Now add positive 
imaginary 
admittance. 

Admittance 
Chart 
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Matching Example 

 y=0.5+j0 

 Before we add the 
admittance, add a 
mirror of the r=1 
circle as a guide 

 Now add positive 
imaginary 
admittance jb = j0.5 

Admittance 
Chart 

 

pF16C

CMHz1002j
50

5.0j

5.0jjb








pF16 100
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Matching Example 

 We will now add 
series impedance 

 Flip to the 
impedance Smith 
Chart 

 We land at on the 
r=1 circle at x=-1 

Impedance 
Chart 
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Matching Example 

 Add positive 
imaginary 
admittance to get to 
z=1+j0 

Impedance 
Chart 

pF16
100

   

nH80L

LMHz1002j500.1j

0.1jjx







nH80
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Matching Example 

 This solution would 
have also worked 

Impedance 
Chart 

pF32

100nH160
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Because the inductor and capacitor 
impedances change with frequency, the 
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dB and dBm 

A dB is defined as a POWER ratio. For example: 

 






 













log20

log10

P

P
log10

2

for

rev
dB

A dBm is defined as log unit of power referenced to 1mW: 











mW1

P
log10PdBm
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Single Stub Tuner 

Match 100 load to a 50 system at 100MHz 
using two transmission lines connected in 
parallel 

0

100 
1 

2 



 Introduction to RF – Part 1 – Transmission Lines - McGinnis 50 

Single Stub Tuner 

 Adding length to 
Cable 1 rotates the 
reflection 
coefficient 
clockwise. 

 Enough cable is 
added so that the 
reflection 
coefficient reaches 
the mirror image 
circle 

nS49.3

MHz1003602251

1

1





Impedance 
Chart 

 2511
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Single Stub Tuner 

 The stub is going to 
be added in parallel 
so flip to the 
admittance chart. 

 The stub has to add 
a normalized 
admittance of 0.7 
to bring the 
trajectory to the 
center of the Smith 
Chart 

Admittance 
Chart 
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Single Stub Tuner 

Admittance 
Chart 

 An open stub of 
zero length has an 
admittance=j0.0 

 By adding enough 
cable to the open 
stub, the 
admittance of the 
stub will increase. 

 70 degrees will give 
the open stub an 
admittance of j0.7 

 702

nS97.0

MHz100360270

2

2




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Single Stub Tuner 

Admittance 
Chart 

0

100 
3.5nS 

0.97nS 
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Single Stub Tuner 

Admittance 
Chart 

0

100 
1.5nS 

1.4nS 

This solution would 
have worked as well. 
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Single Stub Tuner Matching Bandwidth 

50 MHz 

150 MHz 

Because the cable phase changes linearly 
with frequency, the match works over a 
narrow frequency range 

Impedance 
Chart 
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Two Port Z Parameters 

We have only discussed reflection so far. What about 
transmission? Consider a device that has two ports: 

1V 2V

2I
1I

    IZV

IZIZV

IZIZV

2221212

2121111







The device can be characterized by a 2x2 matrix: 
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Scattering (S) Parameters 









iiio

iii

VVIZ

VVV

Since the voltage and current at each port (i) can be broken 
down into forward and reverse waves: 

We can characterize the circuit with forward and reverse 
waves: 

    











VSV

VSVSV

VSVSV

2221212

2121111
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Z and S Parameters 

           

            1
o

o
1

o

S1S1ZZ

1ZZ1ZZS









Similar to the reflection coefficient, there is a one-to-one 
correspondence between the impedance matrix and the 
scattering matrix: 
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Normalized Scattering (S) Parameters 

The S matrix defined previously is called the un-normalized 
scattering matrix. For convenience, define normalized waves: 

io

i
i

io

i
i

Z2

V
b

Z2

V
a









Where Zoi is the characteristic impedance of the transmission 
line connecting port (i) 

|ai|2 is the forward power into port (i) 

|bi|2 is the reverse power from port (i) 
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Normalized Scattering (S) Parameters 

The normalized scattering matrix is: 

Where: 

    asb

asasb

asasb

2221212

2121111







j,i

io

jo

j,i S
Z

Z
s 

If the characteristic impedance on both ports is the same then 
the normalized and un-normalized S parameters are the same. 

Normalized S parameters are the most commonly used. 
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Normalized S Parameters 

The s parameters can be drawn pictorially 

s11 and s22 can be thought of as reflection coefficients 

s21 and s12 can be thought of as transmission coefficients 

s parameters are complex numbers where the angle 
corresponds to a phase shift between the forward and reverse 
waves 

s11 s22 

s21 

s12 

a1 

a2 
b1 

b2 
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Examples of S parameters 

 

Zo 
1 2 

 

















0e

e0
s

j

j

2 1 
  














10

01
s

1 2 

  









0G

00
s

G 

Transmission Line 

Short 

Amplifier 
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Examples of S parameters 

 


















010

001

100

s

1 

2 

  









01

00
s

Zo 

Isolator 

1 2 

3 

Circulator 
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Lorentz Reciprocity 

If the device is made out of linear isotropic materials 
(resistors, capacitors, inductors, metal, etc..) then: 

   ss
T



j,ii,j ss  ji 

or 

for 

This is equivalent to saying that the transmitting pattern of an 
antenna is the same as the receiving pattern 

reciprocal devices:  transmission line 

    short 

    directional coupler 
non-reciprocal devices:  amplifier 

    isolator 

    circulator 
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Lossless Devices 

The s matrix of a lossless device is unitary: 

     1ss
T* 









j

2

j,i

i

2

j,i

s1

s1
for all j 

for all i 

Lossless devices:  transmission line 

    short 

    circulator 

Non-lossless devices:  amplifier 

    isolator 
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Network Analyzers 

 Network analyzers measure S 
parameters as a function of 
frequency 

 At a single frequency, network 
analyzers send out forward 
waves a1 and a2 and measure the 
phase and amplitude of the 
reflected waves b1 and b2 with 
respect to the forward waves. 

a1 a2 

b1 b2 

02a1

1
11

a

b
s





02a1

2
21

a

b
s





01a2

1
12

a

b
s





01a2

2
22

a

b
s




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Network Analyzer Calibration 

To measure the pure S parameters of a device, we need to 
eliminate the effects of cables, connectors, etc. attaching the 
device to the network analyzer 

s11 s22 

s21 

s12 

x11 x22 

x21 

x12 

y11 y22 

y21 

y12 

yx21 

yx12 

Connector Y Connector X 

We want to know the S parameters at 
these reference planes 

We measure the S parameters at these 
reference planes 
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Network Analyzer Calibration 

 There are 10 unknowns in the connectors 

 We need 10 independent measurements to 
eliminate these unknowns 
 Develop calibration standards 

 Place the standards in place of the Device Under Test 
(DUT) and measure the S- parameters of the standards 
and the connectors 

 Because the S parameters of the calibration standards 
are known (theoretically), the S parameters of the 
connectors can be determined and can be mathematically 
eliminated once the DUT is placed back in the measuring 
fixtures. 
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Network Analyzer Calibration 

 Since we measure four S parameters for each 
calibration standard, we need at least three 
independent standards. 

 One possible set is: 
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Delay* 
*~90degrees 



 Introduction to RF – Part 1 – Transmission Lines - McGinnis 70 

Phase Delay 

A pure sine wave can be written as: 

 ztj
oeVV 

The phase shift due to a length of cable is: 

ph

ph

d
v

d








The phase delay of a device is defined as: 

 


 21
ph

Sarg



 Introduction to RF – Part 1 – Transmission Lines - McGinnis 71 

Phase Delay 

 For a non-dispersive cable, the phase delay is the 
same for all frequencies.  

 In general, the phase delay will be a function of 
frequency.  

 It is possible for the phase velocity to take on any 
value - even greater than the velocity of light 
 Waveguides 

 Waves hitting the shore at an angle 
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Group Delay 

 A pure sine wave has no information content 
 There is nothing changing in a pure sine wave 

 Information is equivalent to something changing 

 To send information there must be some 
modulation of the sine wave at the source 

    tcostcosm1VV o 

        tcostcos
2

m
VtcosVV oo 

The modulation can be de-composed into different frequency 
components 
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Group Delay 

 

    

    ztcos
2

m
V

ztcos
2

m
V

ztcosVV

o

o

o







The waves emanating from the source will look like 

Which can be re-written as: 

    ztcosztcosm1VV o 
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Group Delay 

The information travels at a velocity 









 11vgr

The group delay is defined as: 

  












21

gr
gr

Sarg

d

v

d
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Phase Delay and Group Delay 

Phase Delay: 

 


 21
ph

Sarg

Group Delay: 

  



 21

gr
Sarg
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Transmission Line Topics 

 Phasors 

 Traveling Waves 

 Characteristic Impedance 

 Reflection Coefficient 

 Standing Waves 

 Impedance and Reflection 

 Incident and Reflected 
Power 

 

 

 Smith Charts 

 Load Matching 

 Single Stub Tuners 

 dB and dBm 

 Z and S parameters 

 Lorentz Reciprocity 

 Network Analysis 

 Phase and Group Delay 


